
ORIGINAL RESEARCH
published: 06 July 2022

doi: 10.3389/fnins.2022.933660

Frontiers in Neuroscience | www.frontiersin.org 1 July 2022 | Volume 16 | Article 933660

Edited by:

Xi Jiang,

University of Electronic Science and

Technology of China, China

Reviewed by:

Jiashuang Huang,

Nanjing University of Aeronautics and

Astronautics, China

Qi Zhu,

Nanjing University of Aeronautics and

Astronautics, China

*Correspondence:

Biao Jie

jbiao@nuaa.edu.cn

Mingxia Liu

mxliu@med.unc.edu

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 01 May 2022

Accepted: 13 June 2022

Published: 06 July 2022

Citation:

Lin K, Jie B, Dong P, Ding X, Bian W

and Liu M (2022) Convolutional

Recurrent Neural Network for Dynamic

Functional MRI Analysis and Brain

Disease Identification.

Front. Neurosci. 16:933660.

doi: 10.3389/fnins.2022.933660

Convolutional Recurrent Neural
Network for Dynamic Functional MRI
Analysis and Brain Disease
Identification
Kai Lin 1, Biao Jie 1*, Peng Dong 1, Xintao Ding 1, Weixin Bian 1 and Mingxia Liu 2*

1 School of Computer and Information, Anhui Normal University, Wuhu, China, 2Department of Radiology and Biomedical

Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Dynamic functional connectivity (dFC) networks derived from resting-state functional

magnetic resonance imaging (rs-fMRI) help us understand fundamental dynamic

characteristics of human brains, thereby providing an efficient solution for automated

identification of brain diseases, such as Alzheimer’s disease (AD) and its prodromal

stage. Existing studies have applied deep learning methods to dFC network analysis

and achieved good performance compared with traditional machine learning methods.

However, they seldom take advantage of sequential information conveyed in dFC

networks that could be informative to improve the diagnosis performance. In this paper,

we propose a convolutional recurrent neural network (CRNN) for automated brain disease

classification with rs-fMRI data. Specifically, we first construct dFC networks from rs-fMRI

data using a sliding window strategy. Then, we employ three convolutional layers and

long short-term memory (LSTM) layer to extract high-level features of dFC networks and

also preserve the sequential information of extracted features, followed by three fully

connected layers for brain disease classification. Experimental results on 174 subjects

with 563 rs-fMRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

demonstrate the effectiveness of our proposed method in binary and multi-category

classification tasks.

Keywords: dynamic functional connectivity, sequential information, Alzheimer’s disease, classification, fMRI

1. INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disease in the elderly, accounting
for about two-thirds of all dementia cases, which can cause irreversible loss of brain neurons
(Nussbaum and Ellis, 2003). The clinical manifestations are progressive impairment of memory,
insight, and judgment, as well as obstacles to the orientation of the surrounding environment
and language obstacles (Tarawneh and Holtzman, 2012). The cost of long-term care for patients
with AD may bring a heavy economic burden to the family and society (Association, 2016).
Mild cognitive impairment (MCI), the prodromal stage of AD, may develop into clinical AD at
a fairly rapid rate (Petersen et al., 2001). Therefore, accurate diagnosis of MCI and AD is of great
significance for early treatment and prevention of disease progression.

Resting-state functional magnetic resonance imaging (rs-fMRI), which measures low-frequency
fluctuations in blood oxygen level dependent (BOLD) signals, provides a non-invasive solution
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for studying the functional structure of the brain (Lee et al.,
2013). Functional connectivity (FC) networks derived from rs-
fMRI data help describe the temporal dependency of neuronal
activation patterns between brain regions (van den Heuvel and
Hulshoff Pol, 2010), and have been applied to the automated
diagnosis of brain diseases, such as AD and MCI (Chen et al.,
2011; Wee et al., 2012), schizophrenia (Shen et al., 2010), and
autism spectrum disorder (Wang et al., 2019c). The existing
studies usually implicitly assume that the FC of the human brain
is stationary during fMRI recording (Sporns, 2011), thus ignoring
the temporal dynamics of the brain network. Many studies have
shown that, even in the resting state, FC also exhibits significant
temporal dynamic changes (Hutchison et al., 2013; Zhang et al.,
2016). Increasing evidence suggests that the dynamics of FC
networks may be related to cognitive states (Chang et al.,
2013; Thompson et al., 2013), and assessing the dynamics of
FC networks is critical for better understanding the pathology
of brain diseases (Zhang et al., 2016). Several recent studies
have resorted to dynamic FC (dFC) network to characterize
the temporal changes of FC between brain regions (Hutchison
et al., 2013) and investigated the association of changes in dFC
networks with brain diseases (Jones et al., 2012). Also, studies
have applied dynamic FC networks to brain disease classification
(Sakoglu et al., 2009; Wee et al., 2016), and achieved better
performance compared with those that use traditional stationary
FC networks.

Existing studies on dFC network analysis can be roughly
categorized into two categories: (1) traditional machine learning
methods, and (2) deep learning methods. The first category
typically extracts low-level network measures (i.e., clustering
coefficients) as rs-fMRI features and trains a learning model
(i.e., support vector machine, SVM) for classification (Wee
et al., 2016). For example, Jie et al. (2018) extract and
integrate temporal and spatial variability of dFC networks for
MCI classification. These methods usually rely on handcrafted
feature representations for classification/prediction models,
thereby producing sub-optimal classification performance. In
contrast, deep learning methods usually learn features of dFC
networks in a data-driven manner for brain network analysis
(Kawahara et al., 2016). For example, several studies have
applied convolutional neural network (CNN) to the automated
diagnosis of brain diseases (Wang et al., 2019b; Jie et al.,
2020). Compared with the traditional machine learning methods,
deep learning methods could automatically learn data-driven
features from dFC networks and provide a unified framework
for feature learning and classification/prediction, thus achieving
good classification performance. However, these methods usually
ignore the sequential information of dFC networks that could be
used to further improve the performance.

In this article, we propose a convolutional recurrent neural
network (CRNN) for brain disease classification with rs-fMRI
data, which can explicitly model the sequential information
conveyed in dynamic FC networks for end-to-end brain disease
identification. To the best of our knowledge, this is among
the first attempt to construct a convolutional recurrent neural
network for dFC network analysis using rs-fMRI data. Figure 1
illustrates the architecture of our proposed CRNN method.

Specifically, we first construct dFC networks from the rs-fMRI
time series at successive, overlapping time windows, where
Pearson correlation coefficients (PCC) of the region-based BOLD
signals are used as measures of FC between brain regions. Then,
we employ three convolutional layers to extract features from
the constructed dFC networks and construct a long short-term
memory (LSTM) (Sainath et al., 2015) layer to capture sequential
information of extracted features. The extracted features are
finally fed into three fully connected layers to identify patients
with brain diseases from normal controls. We evaluated the
proposed CRNNmethod on 174 subjects with 563 rs-fMRI scans
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1. The experimental results demonstrate the effectiveness
of our proposed method.

The remainder of this article is organized as follows. In
section 2, we first review related study on the FC network and
deep learning for brain disease diagnosis. We then introduce
the materials used in the experiments and the details of our
proposed framework in section 3. In section 4, we first introduce
the experimental setup and methods for comparison and then
present the corresponding experimental results. In section 5,
we study the influence of key parameters and point out several
limitations of this study as well as future research directions.
Finally, we conclude this article in section 6.

2. RELATED STUDY

2.1. Brain Network Analysis
Network analysis provides an important way of exploring
the association between brain functional organization and
brain diseases (Kaiser, 2011). Learning properties of brain
networks shows great promise for identifying biomarkers from
neuroimaging data. Functional connectivity (FC) networks
estimated from rs-fMRI have been extensively used for brain
disease analysis. Many FC network analysis models have been
developed, from simple stationary FC (sFC) networks (Zanin
et al., 2012; Qiao et al., 2018) to complex time-frequency analysis
based dynamic FC (dFC) networks (Jones et al., 2012; Jie et al.,
2018). Previous studies have found disrupted FC associated
with specific brain regions in patients with AD/MCI such as
the hippocampus (Liu et al., 2008), posterior cingulate cortex
(Bai et al., 2009), and amygdala (Yao et al., 2013), and have
reported abnormal network properties such as changed small
world characteristics in AD/MCI patients (Supekar et al., 2008).
However, these studies mainly focus on topological differences of
FC networks between patients and normal controls (NCs) using
graph theory (Stam et al., 2009; Brier et al., 2014).

On the other hand, several studies have successfully applied
FC networks to the classification of brain diseases using machine
learning methods. For example, Jie et al. (2014) used a graph-
kernel-based method to identify patients with MCI from normal
controls.Wee et al. (2012) designed amultimodality classification
framework based on a multi-kernel support vector machine
(SVM). Gan et al. (2021) developed a multi-graph fusion method
to fuse FC networks, and employed sparse-SVM to jointly

1http://adni.loni.usc.edu/
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FIGURE 1 | Illustration of the proposed convolutional recurrent neural network (CRNN) for brain disease classification with rs-fMRI data, consisting of (A) image

preprocessing and dynamic functional connectivity network construction, (B) temporal and sequential features extraction via three convolutional layers and a long

short-term memory (LSTM) layer, and (C) classification via three fully connected layers.

conduct brain region selection and disease diagnosis. Several
studies have integrated multiple properties of FC networks for
the diagnosis of MCI (Zanin et al., 2012; Jie et al., 2018), autism
(Anderson et al., 2011), and early tourette syndrome in children
(Wen et al., 2017). In general, existing studies on FC network
classification mainly rely on two kinds of methods: traditional
machine learning methods and deep learning methods, with
details introduced as follows.

2.2. Machine Learning for Brain Network
Classification
In traditional machine learning based methods, many
handcrafted measures are usually extracted from FC networks
as features for training a classification model (e.g., support
vector machine, SVM). For example, several studies extracted
connectivity strength (Chen et al., 2011) and local clustering
coefficient (Wee et al., 2012; Jie et al., 2016) from sFC network
as features to train an SVM for MCI identification. Additionally,
some studies extracted and integrated multiple properties of sFC
networks for the diagnosis of brain diseases (Zanin et al., 2012;
Jie et al., 2013), and achieved better performance in comparison
with single network measures.

On the other hand, temporal dynamics of dFC networks are
extracted for brain disease analysis (Chang and Glover, 2010).
For example, several studies have extracted clustering coefficients
(Wee et al., 2016), temporal variabilities (Sakoğlu et al., 2010;
Jie et al., 2018), and/or root-mean-square (Chen et al., 2017)
features from dFC networks to train a classifier for brain disease
classification, and achieve better classification performance
compared with sFC network based methods. However, these
studies generally treat feature learning and classification
separately, which could degrade the classification performance.
Also, these studies typically extract handcrafted network
measures as features, which highly rely on expert knowledge.

2.3. Deep Learning for Brain Network
Classification
Deep learning methods (e.g., convolutional neural networks,
CNNs) that can learn representations of data have been
successfully applied to various fields (LeCun et al., 2015). There
is significant interest in the development and application of
deep learning methods to medical image analysis, including
image segmentation (Milletari et al., 2016; Akkus et al., 2017),
registration (Boveiri et al., 2020), and brain disease diagnosis
(Shen et al., 2015; Deepak and Ameer, 2019; Wen et al., 2020).
In recent years, many studies have successfully applied deep
learning methods to brain FC network analysis (Ju et al., 2017;
Zeng et al., 2018; Zhang et al., 2020). For example, Kawahara
et al. (2016) developed a CNN-based FC network analysis
method to predict cognitive and motor developmental outcome
scores of preterm infants. Zeng et al. (2018) built a deep
discriminant autoencoder network for cross-site classification of
schizophrenia. Meszlényi et al. (2017) developed a CNN-based
method for FC network analysis and MCI classification. He
et al. (2020) developed a deep neural network (DNN) for FC
prediction of behavior and demographics Unfortunately, these
methods mainly focus on stationary FC networks and, thus,
cannot be applied to dynamic FC network analysis.

Several recent studies employ deep learning methods for dFC
network based disease analysis and yield better performance
compared with sFC network based methods. For example, Wang
et al. (2019a) presented a dFC network-based CNN framework
for electroencephalogram (EEG) based person identification in
diverse human states. Jie et al. (2020) built a weighted correlation
kernel based CNN framework for automated diagnosis of
MCI. However, the valuable sequential information conveyed in
dynamic FC networks is generally neglected in these studies. To
this end, we propose a convolutional recurrent neural network
to explicitly capture the sequential information conveyed in
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TABLE 1 | Demographic information of all rs-fMRI scans of the subjects used in

this study (Mean ± SD).

Group AD lMCI eMCI NC

Gender (M/F) 55/44 95/50 73/92 67/87

Age (Years) 74.7± 7.4 72.3± 8.1 72.4± 7.1 76.0± 6.8

MMSE 21.8± 3.3 27.1± 2.1 28.1± 1.6 28.8± 1.4

M/F, Male/Female.

MMSE, Mini-Mental State Examination.

dynamic FC networks for brain disease classification with rs-
fMRI data.

3. MATERIALS AND METHODS

Figure 1 illustrates the proposed convolutional recurrent neural
network (CRNN) for rs-fMRI based brain disease classification,
consisting of three parts: (a) image preprocessing and dynamic
functional connectivity (dFC) network construction, (b) feature
learning, and (c) classification. In this section, we first present the
subjects used in this study and then introduce the details of the
proposed method.

3.1. Subjects
The rs-fMRI data obtained from the ADNI database were studied
in this paper. In this study, we used 563 scans of 174 subjects,
including 31 AD, 45 late MCI (lMCI), 50 early MCI (eMCI), and
48 normal controls (NCs). It is worth noting that the subjects
participating in the studymay have one or more scans at different
time points. The 563 scans can be divided into 99 cases of AD,
145 cases of lMCI, 165 cases of eMCI, and 154 cases of NC.
The specifications of the data acquired in each scan are: the in-
plane image resolution is 2.29 − 3.31mm, the slice thickness is
3.31mm, TE (echo time) is 30ms, and TR (repetition time) is
2.2− 3.1 s. There are 140 volumes (time points) for each subject.
The demographic and clinical information of rs-fMRI scans of all
subjects is summarized in Table 1.

3.2. Proposed Method
3.2.1. Image Preprocessing and Network

Construction
All rs-fMRI data are preprocessed by standard procedures
using FSL FEAT software. Specifically, we discard the first 3
volumes before preprocessing, and then process the remaining
137 volumes according to the standard pipeline, including (1)
slice timing correction, (2) head motion estimation, (3) bandpass
filtering, and (4) the regression of white matter, cerebrospinal
fluid and motion parameters. To reduce the influence of head
motion, we remove the fMRI data of the head moving more than
2.0mm in any direction or 2◦ in any rotation. Then, we perform
structural skull stripping and map the fMRI data of the skull
stripping to the Montreal Neurological Institute space. A 6mm
Gaussian kernel is used to spatially smooth the rs-fMRI data.
Subjects whose frame displacement exceeds 2.5 min (FD > 0.5)
are not included in our analysis. Finally, using the automated

anatomical labeling (AAL) template, the brain space of each
subject’s fMRI scan was partitioned into 116 regions of interest
(ROIs). For each subject, the average rs-fMRI time series from
the BOLD signals in all ROIs were calculated, which are used for
the construction of dFC networks.

We constructed the dFC network using an overlapping sliding
window strategy. As shown in Figure 1A, for each subject with
N ROIs, we first partition the time series into T overlapped
windows/segments, and build an FC network/matrix Gt

∈ R
N×N

within the t-th (t = 1, · · · ,T) time window. In Gt , each node
denotes a specific ROI, and the edge weight between a pair of
ROIs is the Pearson’s correlation coefficient (PCC). In this way,
we can obtain a set of T FC networks G with the window length
of L and the sliding step size of S to characterize the dynamics
of brain networks for each subject, i.e., G = [G1, G2, · · · , GT] ∈
R
T×N×N .

3.2.2. Temporal and Sequential Feature Extraction
As shown in Figure 1B, we define four layers in the proposed
CRNN framework to model both temporal and sequential
features of the constructed dynamic functional connectivity
networks. Specifically, following (Jie et al., 2020), we first define
three convolutional layers to extract hierarchical (i.e., region,
whole-network, and temporal) features from the constructed
dFC networks, respectively. Then, we use a recurrent neural
network layer to learn the important sequential features of brain
networks. More details can be found in the following.

(i) Region feature extraction. To learn region features from
the whole dFC networks, in the first convolutional layer, we set
the size of the kernel of S1 × N × 1 and set the stride along
three dimensions (i.e., one temporal and two spatial dimensions)
to (1, 1, 1). The convolution along two spatial dimensions is
a feature mapping for each ROI, while the convolution along
the temporal dimension denotes different feature mappings of
the same ROI. This helps characterize the temporal properties
of the corresponding ROI. Features extracted from this layer
characterize temporal dynamics of brain regions, and these
features are high-order since these features are calculated based
on functional connectivities of specific ROI across S1 FC
networks.

(ii) Whole-network feature extraction. To extract whole-
network features from our learned region features, in the second
convolutional layer, we set the kernel of S2 × 1 × N, and
set the stride in three dimensions to (1, 1, 1). For this layer,
the convolution along two spatial dimensions is a feature
mapping for the whole FC network. The convolution along the
temporal dimension represents different mappings of the whole
FC network, reflecting temporal changes in dFC networks.

(iii) Temporal feature extraction. We further define the third
convolutional layer to model the temporal features of the whole
dFC network. Specifically, we set the kernel size of S3 × 1 × 1
and set the stride size in three dimensions to (2, 1, 1). Therefore,
the features obtained in this layer with a kernel can be considered
representations of the temporal dynamics of the brain network.
It is worth noting that these three convolution layers are used for
learning high-level and high-order temporal features from dFC
networks derived from the rs-fMRI time series.
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(iv) Sequential feature extraction. As a type of RNN that
incorporates a memory cell, long short-term memory (LSTM)
(Sainath et al., 2015) has been successfully applied to temporal
modeling in various domains, such as video and speech analysis.
To capture the temporal dynamics of brain networks, we propose
to use an LSTM layer to model the sequential information of
dFC networks. Specifically, to fit the input shape required by
the LSTM, we first flatten the temporal features learned in the
previous convolutional layer. The flattened features are then fed
into an LSTM layer defined as follows:

f t = σ (U f xt +Wf ht−1
+ bf ) (1)

gt = tanh(Ugxt +Wght−1
+ bg) (2)

ot = σ (Uoxt +Woht−1
+ bo) (3)

st = f tst−1
+ gtσ (U ixt +Wiht−1

+ bi) (4)

ht = tanh(st)ot (5)

where f t , gt , and ot denote the forget gate unit, the external input
gate unit, and the output gate unit at time t, respectively. Here,
xt , ht , and st are the input vector, hidden vector, and state vector,
respectively. Uk,Wk, and bk with k ∈ f , g, o, i denote weights and
biases, respectively. Additionally, σ and tanh denote sigmoid and
hyperbolic tangent activation functions. The output sequential
features of the LSTM layer are subsequently reshaped back to feed
the next layer for classification.

3.2.3. Classification
In the classification module, we use three fully connected layers
(containing 32, 16, and 4 neurons, respectively) to learn a
mapping between sequential features and category labels (e.g.,
patient with AD or NC) for classification. The output (via
softmax) of the proposed method is the probability of the subject
belonging to a specific category. In the proposed CRNN, a
rectified linear unit (ReLU) is employed as the activation function
of each layer, and dropout with a rate of 0.25 is used in each fully
connected layer.

3.2.4. Implementation
The proposed CRNN is implemented in Python based on the
Keras package, and the model is trained on a single GPU
(NVIDIA GeForce GTX 1080Ti) with 11 GB of memory. When
constructing dynamic FC networks, we empirically set the fixed
length of the time window as L = 70 and the sliding step size
as S = 2. Therefore, the number of time windows per subject is
T = 34. In the three convolutional layers, we, respectively, set
the convolution kernel size along the time dimension as follows:
S1 = 2, S2 = 2, and S3 = 8. The corresponding channel numbers
of the three convolutional layers are set as follows: K1 = 8,
K2 = 16, and K3 = 32. According to the above parameters,
we can calculate T1 = 13. When predicting the progression
of brain diseases, softmax is used as the activation function of
the last fully connected layer for binary classifications and four-
category classifications. Here, we use the Adam optimizer with
recommended parameters for training, by empirically setting the
number of epochs to 200 and the batch size to 16.

4. EXPERIMENT

4.1. Experimental Settings
We employ a subject-level 5-fold cross-validation strategy in this
study, ensuring that scans from the same subject do not appear in
both train and test sets. Specifically, all subjects with baseline were
first divided into 5 subsets of roughly the same size. Each subset
is then selected in turn as the test set, and the remaining 4 subsets
(including their other scans) and subjects without baseline scans
are combined to form the training set. In addition, in each fold
of cross-validation, we further select 20% of the training data
as the validation data to determine the optimal parameters of
a specific classification model. It is worth noting that we only
use a baseline scan of each subject in the test set as testing
subject to evaluate the performance of our proposed method.
Also, each scan of each subject is considered an independent
sample, but all scans of the same subject have the same category
label. Finally, the classification results generated by amethodwith
5-fold cross-validation are averaged and recorded.

In order to evaluate the effectiveness of the proposed
model, we conducted both binary and multi-class classification
experiments, including (1) eMCI vs. NC classification, (2) AD
vs. NC classification, and (3) AD vs. lMCI vs. eMCI vs. NC
classification. Three evaluation metrics are used to measure
the performance of binary classifications, namely classification
accuracy (ACC), sensitivity (SEN), and specificity (SPE). For
multi-class disease classification, we evaluate the performance by
calculating both the overall accuracy of all categories and the
classification accuracy of each category.

4.2. Methods for Comparison
In the experiments, we first compared our method with three
baseline methods and state-of-the-art methods.

(1) baseline: In this method, we first construct an sFC network
for each subject by calculating the Pearson correlation coefficient
between the entire time series of any pair of ROIs. Then, the
connectivity strength of the stationary FC network is used as a
network feature. The t-test method with a threshold (i.e., p-value
< 0.05) is used for feature selection of binary class tasks. Finally, a
linear support vector machine (SVM) with default parameters is
used for classification.

(2) CC: In this method, the subject’s stationary FC network is
first constructed. Then the local clustering coefficients of all 116
ROIs from the constructed stationary FC network are extracted as
features. We use a t-test and linear SVM with default parameters
for feature selection and classification, respectively.

(3) M2TFS: Similar to our proposed CRNN, this method
first constructs a set of T dynamic FC networks for each
subject. Then, following (Jie et al., 2018), the temporal and
spatial mean features of the dynamic FC network are extracted.
The manifold regularized multi-task feature selection (M2TFS)
method and multi-kernel SVM are used for feature selection and
classification, respectively.

(4) CNN: This method is a state-of-the-art approach for rs-
fMRI analysis. For a fair comparison, the CNN method employs
the same architecture as our method, but without using recurrent
neural networks to extract sequential features. That is, CNN does
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TABLE 2 | Performance of five methods in two binary classification tasks, i.e., eMCI vs. NC and AD vs. NC classifications (Mean ± SD).

Method
eMCI vs. NC (%) AD vs. NC (%)

ACC SPE SEN ACC SPE SEN

baseline 57.1± 0.4 48.1± 11.5 65.6± 11.3 73.3± 12.6 77.8± 1.9 66.7± 0.0

CC 63.6± 5.7 50.0± 14.1 75.0± 15.4 75.0± 15.4 80.0± 8.3 66.7± 17.1

M2TFS 67.7± 2.0 47.3± 5.8 84.7± 1.4 76.4± 5.8 100.0 ± 0.0 33.3± 19.2

CNN 76.2± 8.1 77.3± 7.7 75.2± 19.2 87.8± 6.9 92.0± 11.5 80.0± 19.2

CRNN (ours) 84.5 ± 4.7 84.0 ± 11.5 84.8 ± 14.3 92.8 ± 6.9 96.7± 0.0 86.7 ± 18.3

The bold values indicate the one with the largest mean among all methods.

TABLE 3 | Performance of five methods in the multi-class classification task, i.e., AD vs. lMCI vs. eMCI vs. NC classification.

Method
AD vs. lMCI vs. eMCI vs. NC (%)

ACC ACCNC ACCeMCI ACClMCI ACCAD

Baseline 30.6± 9.2 20.0± 7.8 38.9± 18.5 30.0± 6.8 33.3± 13.6

CC 35.0± 10.5 22.0± 11.9 69.5± 16.2 21.0± 17.4 6.7± 14.9

M2TFS 44.0± 1.2 36.0± 20.4 87.6 ± 9.6 22.0± 28.9 0.0± 0.0

CNN 52.8± 10.8 44.7± 30.6 53.8± 4.1 65.0± 8.7 46.7± 19.2

CRNN (ours) 61.7 ± 2.8 65.3 ± 3.8 63.3± 5.5 65.0 ± 12.6 46.7 ± 19.2

ACC, Accuracy. The bold values indicate the one with the largest mean among all methods.

FIGURE 2 | Receiver operating characteristic (ROC) curves achieved by five different methods in (A) eMCI vs. NC classification and (B) AD vs. NC classification.

not use the LSTM layer, but instead uses an average pooling layer,
followed by three fully connected layers for classification.

4.3. Classification Performance
Tables 2, 3 report the quantitative results of different methods
in two binary classifications and a multi-class classification task,
respectively. The receiver operating characteristic (ROC) curves
of two binary classification tasks are plotted in Figure 2. It
can be seen from Figure 2 and Tables 2, 3 that our proposed
CRNN method is generally better than the four competing

methods in the three classification tasks. For example, the ACC
values of our proposed CRNN in eMCI vs. NC classification
and AD vs. NC classification are 84.5 and 92.8%, respectively,
while the second best ACC results obtained by CNN are 76.2
and 87.8%, respectively. For the challenging AD vs. lMCI vs.
eMCI vs. NC classification task, the overall accuracy of our
CRNN is 61.7%, which is an increase of 8.9% compared with
CNN. These results indicate that our proposed CRNN method
is effective in predicting the progression of brain diseases
based on rs-fMRI.
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FIGURE 3 | Total loss of the proposed method with 200 epochs in each fold cross-validation (from left to right) for AD vs. lMCI vs. eMCI vs. NC classification task.

Here, (A) total loss of training data, and (B) total loss on validation data.

In addition, from Figure 2 and Tables 2, 3, we can also
have three interesting observations. First, methods based on
dynamic FC networks (i.e., M2TFS, CNN, and CRNN) are
generally superior to methods based on static FC networks (i.e.,
baseline and CC). This suggests that the dynamic changes of
the rs-fMRI time series can provide useful information for a
better understanding of the pathology of brain diseases. Second,
compared with traditional machine learning methods (i.e.,
baseline, CC, andM2TFS), deep learning methods (i.e., CNN and
CRNN) can achieve better performance. This shows that deep
learning can capture the potential discriminative features of brain
networks. Finally, compared with the CNN method, our CRNN
can obtain better performance, which proves the advantage of
mining sequential features from a dynamic FC network.

On the other hand, Figure 3 plots the total loss curve of
training subjects and validation subjects in each fold of cross-
validation for the task of AD vs. lMCI vs. eMCI vs. NC
classification. It can be seen from Figure 3 that our proposed
CRNNmethod can quickly converge within 80 epochs.

4.4. Discriminative Functional Connectivity
We further conduct experiments to identify discriminative brain
regions that contribute the most to a specific classification task
and identify the informative functional connectivity between
discriminative brain regions.

Specifically, in our proposed CRNN method, the output of
the first convolutional layer is a 4-dimensional tensor of size
(T − 1) × 1 × N × K1, representing the feature vector of each
subject in T − 1 time series segments. For simplicity, we average
the feature vectors of T − 1 time series segments. Since there
are K1 = 8 channels in the first convolutional layer, we can
construct 8 feature vectors for each subject, and each feature
vector corresponds to a specific channel. Then, the standard t-
test was used to measure the group difference between eMCI
vs. NC and AD vs. NC, respectively. It is worth noting that the

feature vector obtained in this way may be different in each fold
of cross-validation. For each channel, we use the standard t-
test for each fold cross-validation to integrate all brain regions
with p-values less than 0.05 in 5-fold cross-validation, and select
brain regions that appear 3 times or more as discriminative
brain regions.

Supplementary Tables S1, S2 in the Supporting Information
list the names and abbreviations of discriminative brain regions
in the eMCI vs. NC group and AD vs. NC group, respectively.
Figure 4 plots those discriminative brain regions in the template
space. From Figure 4 and Supplementary Tables S1, S2, we first
can see that) the discriminative brain regions of the two groups
(i.e., eMCI vs. NC group and AD vs. NC group) all contain
the cerebellum, indicating that the cerebellum may be related to
MCI/AD and may provide useful information for brain diseases
prognosis (Thomann et al., 2008). Second, the discriminative
brain regions in the eMCI vs. NC group are largely located in
the left hemisphere. We speculate that during the evolution of
AD, the left half part of some brain regions of eMCI patients
may first begin to have brain atrophy, which leads to changes
in their functional connectivity (Thompson et al., 2003; Daianu
et al., 2013). Finally, the discriminative brain regions selected by
our proposed method in two classification tasks are consistent
with previous studies. For example, the brain regions detected in
the AD vs. NC classification, including posterior cingulate gyrus,
parahippocampal gyrus, fusiform gyrus, and temporal pole, have
been reported to be useful in discriminating patients with AD
from NCs (Jie et al., 2020). Also, the precentral gyrus identified
by our method processes auditory error signals during speech
production to maintain fluency (Ozker et al., 2022), and the
orbitofrontal cortex plays an important role in decision-making
and emotion processing (Bechara et al., 2000; Rolls, 2004).
Abnormal changes in these regions can lead to the development
of brain disease and also suggest that the discriminative brain
regions identified by our method are associated with MCI/AD.
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FIGURE 4 | Discriminative brain regions identified by the proposed method in (A) eMCI vs. NC classification and (B) AD vs. NC classification.

Furthermore, we performed a standard t-test on the functional
connectivity between selected discriminative brain regions.
Figure 5 plots the group difference in the connectivity strength
between the discriminative brain regions in the eMCI vs. NC
group and the AD vs. NC group in Supplementary Tables S1, S2.
Here, the color indicates the corresponding p-value, we set
p-values more than 0.05 to 1 for clarity. From Figure 5, we
can clearly observe that there are strong correlations between
the two brain regions of lobules IV and V of the vermis
and the left rolandic operculum with other discriminative
brain regions in the eMCI vs. NC group. In addition,

we can also observe that compared with the eMCI vs.
NC group, the AD vs. NC group has more connectivity
strength with p-values less than 0.05 (corresponding to the
blue part in Figure 5). This suggests that the change in
the connectivity strength in the AD vs. NC group is more
pronounced than that in the eMCI vs. NC group, reflecting
that AD’s impairment of the brain gradually increases as the
disease progresses.

Besides, we identified the functional connectivities with
p-values less than 0.05 between discriminative brain regions as
the most discriminative functional connectivity. Figure 6 plots
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FIGURE 5 | The difference in connectivity strength between the discriminative brain regions for (A) eMCI vs. NC group and (B) AD vs. NC group. Here, p-values larger

than 0.05 are set to 1 (corresponding to the yellow part in the figure).

FIGURE 6 | Discriminative functional connectivities for (A) eMCI vs. NC and (B) AD vs. NC classification. Each arc shows the selected connectivity between two ROIs,

where colors are randomly allocated for better visualization and the thickness of each arc indicates its discriminative power that is inversely proportional to the

corresponding p-value in the t-test.

the most discriminative functional connectivities on the 5th and
7th channels for eMCI vs. NC group and AD vs. NC group.
As shown in Figure 6, for eMCI vs. NC classification, the brain
regions we selected include the left fusiform gyrus, the left
lobule VI of the cerebellar hemisphere, and lobule VII of the
vermis. The functional connectivity of these brain regions is
significantly reduced in MCI patients, which is consistent with

previous studies by Bokde et al. (2006) and Thomann et al.
(2008). For AD vs. NC classification, there are two discriminative
brain regions selected by our method, including the left crus
I of the cerebellar hemisphere and the right lobule IV, V
of the cerebellar hemisphere. According to previous studies
by Thomann et al. (2008), these two brain regions may be
biologically related to AD. These results further confirm that our
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FIGURE 7 | The discriminative power of features between eMCI and NC groups learned by (A) baseline, (B) CC, (C) M2TFS, (D) CNN, and (E) CRNN.

FIGURE 8 | The discriminative power of features between AD and NC groups learned by (A) baseline, (B) CC, (C) M2TFS, (D) CNN, and (E) CRNN.

method is potentially helpful in discovering fMRI biomarkers for
MCI and AD identification.

4.5. Discriminative Power of Learned
Features
In this section, we study the discriminative power of the
features learned in our proposed CRNN method. Specifically,
in the multi-class classification task, we first extract the learned
sequential features from the model (corresponding to the output
of the LSTM layer in our proposed CRNN method). Here, each
sequential feature learned is a feature mapping of the dynamic FC
network with respect to time changes. Then, we use the standard

t-test to calculate the discriminative power of all sequential
features in the eMCI vs. NC group and AD vs. NC group, with
p-values shown in Figures 7, 8, respectively. For comparison, we
also report the discriminative power of the features learned by
the comparison methods (i.e., baseline, CC, M2TFS, and CNN).
There are a total of 6,670 connectivity strength features in the
baseline method, 16 features in SVM-based methods (i.e., CC
and M2TFS), 32 features in CNN, and 64 features in our CRNN,
respectively. In addition, Table 4 reports the average and median
values of p-values for all features in both group pairs.

From Figures 7, 8 and Table 4, we can observe that the
p-values of the features learned by the CNN and CRNN
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methods are mostly close to 0 (i.e., very sparsity) compared
to other methods. It implies that both methods are capable
of distinguishing patients from NCs. Second, the p-value of
our proposed CRNN method is more sparsity than that of the
CNN method, indicating the features learned by the CRNN
method are more discriminative than those learned by other
methods, which also explains why our method can achieve
better classification performance. The above results further
demonstrate the effectiveness of the sequential features extracted
by our CRNNmethod.

5. DISCUSSION

5.1. Effect of Sliding Window Parameters
Existing studies have shown that FC time series based on rs-
fMRI have regular temporal variability (Huang et al., 2016). In
our proposed CRNN, we use the overlapping sliding window
technology (stride: 2) to divide the time series, where the
parameter L determines the length of the time window in
the construction of a dynamic FC network. To investigate the
effects of the sliding time window length on the classification
performance of our proposed CRNN, we set the parameters L
to 30, 50, and 70 for classification, respectively. In Figure 9, we
report the classification accuracy of the CRNN method under
different L values on two binary classification tasks and one four-
class classification task (i.e., eMCI vs. NC group, AD vs. NC

TABLE 4 | The average and median of p-value for learning features in both group

pairs (i.e., eMCI vs. NC groups, and AD vs. NC groups).

Method
eMCI vs. NC AD vs. NC

Mean Median Mean Median

Baseline 0.38 0.32 0.36 0.28

CC 0.29 0.24 0.44 0.40

M2TFS 0.47 0.48 0.49 0.48

CNN 0.01 0 0.02 0

CRNN <1E−3 0 0.01 <1E−33

group, and AD vs. lMCI vs. eMCI vs. NC group), respectively. At
the same time, we also report the classification accuracy of CNN
using different sliding window lengths.

As shown in Figure 9, for all given parameter values, our
proposed CRNN method outperforms CNN on the three
classification tasks, which further illustrates the effectiveness of
the sequential features extracted by our method. In addition,
the classification accuracy of the proposed CRNN on the three
classification tasks is not greatly affected by the different values
of L, which shows that our method has strong robustness
and stability.

Furthermore, in order to evaluate the effect of stride size
on the classification of our proposed CRNN, we fix the sliding
window length L = 70, and set the parameters S to 2, 4, and
6 for classification. Figure 10 illustrates the obtained accuracies
of our CRNN method with three S values on three classification
tasks. From Figure 10, the curve of the accuracy of our proposed
CRNN method with different values of S is very smooth on
the three classification tasks, indicating the robustness of our
proposed CRNNmethod for different S values.

5.2. Temporal Dynamic Analysis
Previous studies have shown that rs-fMRI scan data is the
synchronous fluctuation of the BOLD signal in the internal
functional network of the entire brain (Lee et al., 2013),
which has a high degree of temporal correlation. On the other
hand, an LSTM with a chain of repeated neural network
modules can analyze sequential information and learn long-
term dependencies. From the perspective of model training,
LSTM can effectively solve the problem of gradient explosion or
gradient disappearance by using several gating units to control
information flow. Based on the above reasons, we use LSTM to
analyze the brain network, learn the sequential characteristics
of the dynamic FC network, and use it for the classification of
AD-related brain diseases.

From Figure 9 and Tables 2, 3, compared with CNN,
our proposed CRNN method can obtain better classification
performance. This also proves that learning sequential features
through LSTM (as we do in CRNN) helps boost the classification
performance. The possible reason could be that LSTM is able to

FIGURE 9 | Classification accuracy of the CRNN and CNN methods using different lengths of sliding windows in three tasks: (A) eMCI vs. NC classification, (B) AD

vs. NC classification, and (C) AD vs. lMCI vs. eMCI vs. NC classification.
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FIGURE 10 | Accuracy of the proposed CRNN method with different stride sizes on three classification tasks (i.e., eMCI vs. NC, AD vs. NC, and AD vs. lMCI vs. eMCI

vs. NC classifications).

model the underlying relationship between the time series of each
subject and make decisions based on all time points instead of
each single time point.

5.3. Limitations and Future Study
Several limitations need to be considered. First, we focus on using
only rs-fMRI time series data to automatically identify AD/MCI
in this study. In fact, different imaging methods (e.g., structural
MRI and PET) can provide complementary information for
disease diagnosis. The use of multi-modal information for
brain network analysis will be our future work. Second, the
construction of dynamic FC networks is independent of feature
learning and classifier training, which may affect the prediction
performance. It is interesting to integrate dynamic FC network
construction, network feature learning, and classification into to
unified framework. Furthermore, even though we used all rs-
fMRI scans from all subjects of ADNI, the sample size in this
work is still limited. In future study, we will evaluate the proposed
method on a larger data set, such as attention deficit hyperactivity
disorder (ADHD) with rs-fMRI data.

6. CONCLUSION

In this article, we developed a convolutional recurrent neural
network (CRNN) for dynamic analysis of rs-fMRI time series
data and automated diagnosis of AD-related brain diseases. In
CRNN, we first construct dynamic functional connectivity (dFC)
networks for each subject using an overlapping sliding time

window strategy. These dFC networks are then fed into three
convolutional layers for extracting the temporal features and an
LSTM layer to capture the sequential information of temporal
features along multiple time periods, followed by three fully
connected layers for classification. Experimental results on 174
subjects with rs-fMRI from ADNI demonstrate the effectiveness
of the proposed CRNN method in two binary classifications and
one multi-class classification task.
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